Inverse boundary spectral problem for Riemannian polyhedra
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولStability and Reconstruction in Gel’fand Inverse Boundary Spectral Problem
We consider stability and approximate reconstruction of Riemannian manifold when the finite number of eigenvalues of the LaplaceBeltrami operator and the boundary values of the corresponding eigenfunctions are given. The reconstruction can be done in stable way when manifold is a priori known to satisfy natural geometrical conditions related to curvature and other invariant quantities.
متن کاملInverse Spectral Problems in Riemannian Geometry
Over twenty years ago, Marc Kac posed what is arguably one of the simplest inverse problems in pure mathematics: "Can one hear the shape of a drum?" [19]. Mathematically, the question is formulated as follows. Let /2 be a simply connected, plane domain (the drumhead) bounded by a smooth curve 7, and consider the wave equation on /2 with Dirichlet boundary condition on 7 (the drumhead is clamped...
متن کاملAn Inverse Problem from Sub-riemannian Geometry
The geodesics for a sub-Riemannian metric on a threedimensional contact manifold M form a 1-parameter family of curves along each contact direction. However, a collection of such contact curves on M , locally equivalent to the solutions of a fourth-order ODE, are the geodesics of a sub-Riemannian metric only if a sequence of invariants vanish. The first of these, which was first identified by F...
متن کاملThe inverse spectral problem
1 Introduction The inverse spectral problem on a Riemannian manifold (M, g), possibly with boundary, is to determine as much as possible of the geometry of (M, g) from the spectrum of its Laplacian ∆ g (with some given boundary conditions). The special inverse problem of Kac is to determine a Euclidean domain Ω ⊂ R n up to isometry from the spectrum Spec B (Ω) of its Laplacian ∆ B with Dirichle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2011
ISSN: 0025-5831,1432-1807
DOI: 10.1007/s00208-011-0758-9